FINDING SQUARES OF NUMBERS NEARER TO 100

$$
\begin{aligned}
& X^{2}=X^{2}+Y^{2}-Y^{2} \\
& X^{2}=X^{2}-Y^{2}+Y^{2} \\
& X^{2}=\left(X^{2}-Y^{2}\right)+Y^{2} \\
& X^{2}=(X+Y)(X-Y)+Y^{2}
\end{aligned}
$$

Here ' Y ' is any number. We have to take ' Y ' value such that $(X+Y$) or $(X-Y)$ is 100.

Example: Let we find the value of 98^{2}.
Here we have to take $Y=2$ (Because 98 is 2 less than 100)
$98^{2}=(98+2)(98-2)+2^{2}$
$=100 \times 96+4$
$=9600+4$
= 9604
We can imagine /calc ulate the solution in our memory as follows
Add 2 to 98 gives 100. And subtract 2 from 98 gives 96.
The product of these two numbers is 9600 .
Add 2^{2} means 4 then we get 9604 .
Example: Let we find the value of 96^{2}.
Here we have to take $Y=4$ (Because 96 is 4 less than 100)
$96^{2}=(96+4)(96-4)+4^{2}$

$$
\begin{aligned}
& =100 \times 92+16 \\
& =9216
\end{aligned}
$$

Imagine /calc ulate the solution in our memory as follows
Add 4 to 96 gives 100. And subtract 4 from 96 gives 92.
The product of these two numbers is 9200 .
Add 4^{2} means 16 then we get 9216 .

Example: Let we find the value of 97^{2}.
Add 3 to 97 gives 100. And subtract 3 from 97 gives 94 .
The product of these two numbers is 9400 .
Add 3^{2} means 9 then we get 9409 .
Example: $\quad 99^{2}=9800+1=9801$
$93^{2}=8600+49=8649$
$92^{2}=8464$
Example: Let we find the value of 104^{2}.
Here $Y=4$ (Because 104 is 4 more than 100)
$104^{2}=108 \times 100+16=10816$
Example: $\quad 102^{2}=10404$
$103^{2}=10609$
$106^{2}=11236$
$109^{2}=11881$
Do these:

$$
\begin{aligned}
101^{2} & =\ldots \ldots \ldots \ldots \ldots .107^{2}= \\
99^{2} & =\ldots \ldots \ldots \ldots \ldots \ldots \ldots . .108^{2}= \\
91^{2} & =\ldots \ldots \ldots \ldots \ldots . . \\
94^{2} & =
\end{aligned}
$$

\qquad

