ANDHRA PRADESH COMMON EXAMINATIONS

SUMMATIVE ASSESSMENT-I - SEPTEMBER-2016

GENERAL SCIENCE, Paper – I

(Physical Sciences)
(English Version)

Class-10 - Principles of Evaluation - PART-A &B

Points for Evaluation	Marks allotted	Total Marks
Copper has less specific heat value (or) Copper attains heat quickly. (or) (any related point also suitable. Only one point is needed)	1	1
To slow down the oxidation process. (or) The item does not react with oxygen. (or) They do not spoil. (any related point also suitable. Only one point is needed)	1	1
\	1	1
, 1 2 , 1 2	1	1
Evaporation Boiling The liquid phase changes to gaseous phase at a constant temperature Cooling process. Surface phenomenon. Slow process Cany related points also suitable. Only two points are needed)	2x1	2
(i) Have you ever smelled the oils left for a long time? (ii) How the food materials which had expired produce smell? (iii) Why do we add oils while making pickles? (iv) what happened if we use ghee for a long time? (v) Why do potato chips flush bags filled with gas? (any related points also suitable. Only two points are needed)	2x1	2
(a) If 'f' is the focal length then $\frac{1}{t} = \frac{1}{t} + \frac{1}{t}$	1	
(b) $\frac{1}{f} = \frac{1}{15} + \frac{1}{30} = \frac{2+1}{30} = \frac{3}{30} = \frac{1}{10}$ \Rightarrow $f = 10 \text{ cm (Negative)}$	1	2
(a) If 'f' is the focal length then $f = \frac{uv}{u+v}$		NAGA MURTHY- 9441786635 Contact at: nagamurthysir@gmail.com Visit at: nagamurthy.weebly.com
	Copper has less specific heat value (or) Copper attains heat quickly. (or) (any related point also suitable. Only one point is needed) To slow down the oxidation process. (or) The item does not react with oxygen. (or) They do not spoil. (any related point also suitable. Only one point is needed) So we should not add water to acid. (or) We add acid to water slowly, drop by drop. (any related point also suitable. Only one or two points are needed) $\frac{1}{f} = (n_{ba}^{-1}1)(\frac{1}{R_1} - \frac{1}{R_2}) \text{ (or) } \frac{1}{f} = (n-1)(\frac{1}{R_1} - \frac{1}{R_2})$ (any related point also suitable. Only one point is needed) Evaporation Boiling 1 Escaping of Molecules from the surface of a liquid at any temperature 2 Cooling process. 2 Not cause cooling. 3 Surface phenomenon. 4 Slow process 4 Quick process (any related points also suitable. Only two points are needed) (i) Have you ever smelled the oils left for a long time? (ii) How the food materials which had expired produce smell? (iii) Why do we add oils while making pickles? (iv) what happened if we use ghee for a long time? (v) Why do potato chips flush bags filled with gas? (any related points also suitable. Only two points are needed) (a) If 'f' is the focal length then $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$ (b) $\frac{1}{f} = \frac{1}{15} + \frac{1}{30} = \frac{2+1}{30} = \frac{3}{30} = \frac{1}{10} \implies f = 10 \text{ cm (Negative)}$ (OR) (a) If 'f' is the focal length then $f = \frac{uv}{u+v}$ (b) $f = \frac{15 \times 30}{15 + 30} = \frac{450}{45} = 10 \text{ cm (Negative)}$ (OR) (a) If 'f' is the focal length then $f = \frac{R}{2}$ (b) object distance = image distance, the place of object is C' Radius of curvature "R" = 20 cm	Copper has less specific heat value (or) Copper attains heat quickly. (or) (any related point also suitable. Only one point is needed) To slow down the oxidation process. (or) The item does not react with oxygen. (or) They do not spoil. (any related point also suitable. Only one point is needed) So we should not add water to acid. (or) We add acid to water slowly, drop by drop. (any related point also suitable. Only one or two points are needed) $\frac{1}{f} = (n_{ba}^{-1})(\frac{1}{R_1} - \frac{1}{R_2}) \text{ (or) } \frac{1}{f} = (n - 1)(\frac{1}{R_1} - \frac{1}{R_2}) \text{ (any related point also suitable. Only one point is needed)}$ $\frac{1}{f} = (n_{ba}^{-1})(\frac{1}{R_1} - \frac{1}{R_2}) \text{ (or) } \frac{1}{f} = (n - 1)(\frac{1}{R_1} - \frac{1}{R_2}) \text{ (any related point also suitable. Only one point is needed)}$ $\frac{1}{f} = (n_{ba}^{-1})(\frac{1}{R_1} - \frac{1}{R_2}) \text{ (or) } \frac{1}{f} = (n - 1)(\frac{1}{R_1} - \frac{1}{R_2}) \text{ (any related point also suitable. Only one point is needed)}$ $\frac{1}{f} = (n_{ba}^{-1})(\frac{1}{R_1} - \frac{1}{R_2}) \text{ (or) } \frac{1}{f} = (n - 1)(\frac{1}{R_1} - \frac{1}{R_2}) \text{ (any related point also suitable. Only one point is needed)}$ $\frac{1}{f} = (n_{ba}^{-1})(\frac{1}{R_1} - \frac{1}{R_2}) \text{ (or) } \frac{1}{f} = (n - 1)(\frac{1}{R_1} - \frac{1}{R_2}) \text{ (any related point also suitable. Only two points are needed)}$ $\frac{1}{f} = (n_{ba}^{-1})(\frac{1}{R_1} - \frac{1}{R_2}) \text{ (or) } \frac{1}{f} = (n - 1)(\frac{1}{R_1} - \frac{1}{R_2}) \text{ (or) } \frac{1}{f} = (n - 1)(\frac{1}{R_1} - \frac{1}{R_2}) \text{ (or) } \frac{1}{f} = (n - 1)(\frac{1}{R_1} - \frac{1}{R_2}) \text{ (or) } \frac{1}{f} = (n - 1)(\frac{1}{R_1} - \frac{1}{R_2}) \text{ (or) } \frac{1}{f} = (n - 1)(\frac{1}{R_1} - \frac{1}{R_2}) \text{ (or) } \frac{1}{f} = (n - 1)(\frac{1}{R_1} - \frac{1}{R_2}) \text{ (or) } \frac{1}{f} = (n - 1)(\frac{1}{R_1} - \frac{1}{R_2}) \text{ (or) } \frac{1}{f} = (n - 1)(\frac{1}{R_1} - \frac{1}{R_2}) \text{ (or) } \frac{1}{f} = (n - 1)(\frac{1}{R_1} - \frac{1}{R_2}) \text{ (or) } \frac{1}{f} = (n - 1)(\frac{1}{R_1} - \frac{1}{R_2}) \text{ (or) } \frac{1}{f} = (n - 1)(\frac{1}{R_1} - \frac{1}{R_2}) \text{ (or) } \frac{1}{f} = (n - 1)(\frac{1}{R_1} - \frac{1}{R_2}) \text{ (or) } \frac{1}{f} = (n - 1)(\frac{1}{R_1} - \frac{1}{R_2}) \text{ (or) } \frac{1}{f} = (n - 1)(\frac{1}{R_1} - \frac{1}{R_2}) \text{ (or) } $

8.	(i) Used in Textile industry to bleach the cotton and linen.		
	(ii) Used in paper industry to bleach the wood pulp.		
	(iii) Used to wash clothes.	4 x ½	2
	(iv) Used as oxidizing agent in chemical industries.		
	(v) Used to kill germs in drinking water.		
	(vi) Used in the preparation of Chloroform		
	(vii) Used to clean Bath rooms and toilets		
	(viii) Used to clean water tanks, to remove plaque. (any related points also suitable. Only four points are needed)		
0		1	
9.	$Sin C = \frac{1}{n}$	1	
	$Sin C = \frac{1}{1.5}$ \Rightarrow $Sin C = \frac{10}{15}$ \Rightarrow $Sin C = \frac{2}{3}$	1	2
	$C = 42^{\circ}$	1	2
	Note: Consider whether they write 42° or not.		
	(any related point also suitable. Only two points are needed)		
10A.	(a)10 gm of Ice at 0°C melts to water at 0°C.		
	The latent heat of fusion of ice is $(L) = 80 \text{ cal/gm}$.	1	
	Heat Absorbed (Q ₁) = mL = $10x80 = 800$ cal	-	
	(b) 10 gm of water at 0°C converts to water at 100°C.	1	
	Specific heat of water (s) = 1 cal/gm-°C		_
	Heat absorbed (Q ₂) = m.s. $\Delta T = 10x1x100 = 1000$ cal		4
	(c)10 gm of water at 100°C changes to steam at 100°C.	1	
	Latent heat of vaporization of water is (L) = 540 cal/gm.		
	Heat Absorbed $(Q_1) = mL = 10x540 = 5400$ cal		
	So The amount of heat absorbed	1	
	when 10 gm of Ice at 0°C changes to 10 gm of steam at 100°C		
	$(Q) = Q_1 + Q_2 + Q_3 = 800 + 1000 + 5400 = 7200 \text{ cal}$		
	(any related points also suitable. Only 4 points are needed)		
	(OR)		
10B.	Converging lens means convex lens.	1/2	
	For convex lens 'u' taken as negative.		
	Focal length (f) = 20cm	1/2	
	Object distance (u) = -60cm	, -	
	Image distance (v) = ?	1/2	4
	Lens formula : $\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$	72	4
	1 1 1 1 1 1 1 60-20 40	1/	
	$ \frac{1}{v} = \frac{1}{f} + \frac{1}{u} = \frac{1}{20} + \frac{1}{-60} = \frac{1}{20} - \frac{1}{60} = \frac{60 - 20}{20 \times 60} = \frac{40}{1200} $	1/2	
	$\frac{1}{v} = \frac{1}{30}$ \Rightarrow v = 30cm	1/2	
	Here Object is placed beyond $\overset{v}{C}$. So image is formed		
	between F and C at 30 cm distance.		
	Properties of image: (1) It is real (2) It is inverted (3) It is	3 x ½	
	diminished.		
	(OR)		
	Here Object is placed beyond C.	-	
	So image is formed between F and C	1	
	oo image is formed between 1 and 0		_
	Proportion: (1) It is real (2) It is inverted (2) It is diminished	3x1	4
	Properties: (1) It is real (2) It is inverted (3) It is diminished.	JAI	
	(any related point also suitable. Only 4 points are needed)		
	NAGA MURTHY- 94	41786635)

NAGA MURTHY- 9441786635

Contact at: nagamurthysir@gmail.com

Visit at : ignitephysics.weebly.com

11A.	Cover wooden plank with white chart. Draw two perpendicular lines. Mark one line as NN which is normal to the line marked as MM. MM represents the line drawn along the interface of two media NN represents the normal drawn to this line at 'O'. Take a protractor and place it along NN. Then mark the angles from 0° to 90° on both sides of the line NN. Repeat the same on the other side of the line NN. Now place a semi-circular glass disc so that its diameter coincides with the interface line (MM) and its center coincides with the point O. Point a laser light along NN in such a way that the light propagates from air to glass through the interface at point O and observe the path of laser light coming from other side			4
	of disc Send Laser light along a line which makes 15° and see that it passes through point O. Measure correangle of refraction (r). Note these values in table. Find sin i , sin r and also the ratio $\frac{Sin i}{Sin r}$. Do the same experiment for the angles of incidence s 20°,25°, 30°, and 35°.	esponding		
	In each and every case, we get the ratio $\frac{Sin i}{Sin r}$ as a convenience. Even they write reflection at plane mirror experiments $i = r$ then $\frac{Sin i}{Sin r}$ is a constant.			
	Consider it as suitable answer. Note: Even they write refraction from rarer to denser experiment (or) Glass slab experiment. (any related point also suitable. No need of number of processing the suitable of p			
	Concept should be clear in minimum four points.)			
	(OR)			
11B.	 (i) Take some amount of calcium carbonate in a test t (ii) Heat it with spirit lamp. (iii) Keep a burning stick at the mouth of test tube. (iv) The match stick puts off. (v) We Know that the gas is Carbon dioxide. (vi) Calcium carbonate produce calcium oxide ,carbor (vii) This a decomposition reaction. (any related point also suitable. No need of number of p 	n dioxide.	*	4
	Concept should be clear in minimum four points.)			
12A.	 (i) This reaction is a displacement reaction. Becan Al (Aluminium) displaced Fe (Iron) from Fe₂C (ii) This reaction is a Endothermic reaction. Becan are the control of the co	1		
	The symbol " Δ " indicate heating the substances. (iii) This reaction is an oxidation reaction. Because Oxygen is added to Aluminium			4
	 (iv) This reaction is a reduction reaction. Because Oxygen is removed from Fe₂O₃. (v) This reaction is a Redox reaction. Because 			4
	Both oxidation and reduction occurs in this reaction.			
	(any related point also suitable. Only four points are ne	eded)		
	(OR)	NAGA MURTHY- Contact at : nag Visit at : ignite	amurthysir@	

12B.	Indicators	Acidic solution	Basic Neutral			
			solution	solution		
	Red Litmus	Red	Blue	No change in	Any 6	
			colour		blanks	
	Blue litmus	Red	Blue	Blue	carries	
	Phenolphthalein	No change in	Pink	No colour		
		colour			6 x½	
	Methyl Orange	Red	Yellow	Orange		
	Universal	Red/Orange	Blue/Purple	Parrot green	The next 4	
		/Yellow	/Violet	/Violet		4
	(OR)				blanks	
	Indicators	Acidic solution	Basic solution		carries	
				solution	$4x^{1}/_{4}$	
	Red Litmus	No change in	Blue	No change	4A'/ ₄	
		colour		in colour		
	Blue litmus	Red	No change in			
			colour	in colour		
	Phenolphthalein	No change in	Pink	No change		
	Mathed Ones as	colour	V-II	in colour		
	Methyl Orange	Red	Yellow	No change		
	Universal	Dod/Orongo	Divo/Divole	in colour		
	Universal	Red/Orange /Yellow	Blue/Purple /Violet	Parrot		
	(any related points		/Violet *	green		
13A.	(any related points also suitable.)					
1371.	Properties of Image: (i) Virtual image (ii) Enlarged image (iii) Erect image				3 + 1	4
	(any diagram related is sufficient. Meaningful diagram is enough.) (OR) This question is not for testing drawing skill.					
13B.						
136.	Test tube Conical plask					4
	If we keep burning a with "Pop" sound. (any diagram relat					

Section - IV

S. No	Ans.						
14	С	19	A	24	В	29	В
15	A	20	A	25	A	30	В
16	С	21	D	26	A	31	В
17	D	22	В	27	A	32	С
18	A	23	С	28	В	33	D

Note: * means allot full marks. Each question carries ½ mark.

NAGA MURTHY- 9441786635

Contact at: nagamurthysir@gmail.com Visit at: ignitephysics.weebly.com

