05.ATOMS AND MOLECULES

Questions and Answers

1. Draw the diagram to show the experimental setup for the law of conservation of mass.
A.

2. Explain the process and precautions in verifying law of conservation of mass.
A. Experiment:

Aim: To verify the law of conservation of mass.
Material required: Lead nitrate, potassium iodide, distilled water, conical flask, spring balance, test tube, stand, rubber cork, thread etc.
Procedure

1. Prepare a solution by dissolving approximately 2 grams of lead nitrate in 100 ml of distilled water.
2. Prepare another solution by dissolving approximately 2 gm of Potassium iodide in 100 ml water.
3. Take 100 ml solution of lead nitrate in 250 ml conical flask.
4. Also take 4 ml solution of potassium iodide in test tube.
5. Hang the test tube in the flask carefully, without mixing the solutions. Put a cork on the flask.
6. Weigh the flask with its contents Carefully.
7. Now tilt and swirl the flask, so that the two solutions mix.
8. Weigh the flask again by the same Balance.
9. Record your observations:

Weight of flask and contents before mixing = \qquad
Weight of flask and contents after mixing $=$

We observed that a chemical reaction took place and the mass remained same before and after chemical reaction. Therefore, mass was neither created nor destroyed in the chemical reaction. Hence The law of conservation of mass is verified.
3.15 .9 g . of copper sulphate and 10.6 g of sodium carbonate react together to give 14.2 g of sodium sulphate and 12.3 g of copper carbonate. Which law of chemical combination is obeyed? How?
A. Mass of Copper sulphate $=15.9 \mathrm{~g}$ Mass of Sodium Carbonate $=10.6 \mathrm{~g}$ Total mass of reactants $=26.5 \mathrm{~g}$ Mass of Sodium sulphate $=14.2 \mathrm{~g}$ Mass of Calcium carbonate $=12.3 \mathrm{~g}$ Total mass of products $\quad=26.5 \mathrm{~g}$

The total mass of reactants is equal to the total mass of products.

The law of conservation of mass is obeyed in this reaction.
4. Carbon dioxide is added to 112 g of calcium oxide.The product formed is $\mathbf{2 0 0 g}$ of calcium carbonate. Calculate the mass carbon dioxide used. Which law of chemical combination will govern your answer.
A. $\mathrm{CaO}+\mathrm{CO}_{2} \rightarrow \mathrm{CaCO}_{3}$ Mass of Calcium oxide $=112 \mathrm{~g}$ Mass of Carbon dioxide $=$ ' x ' g Mass of Calcium carbonate $=200 \mathrm{~g}$ According to law of conservation of mass, The total mass of reactants is equal to the total mass of products.

$$
\begin{aligned}
x+112 & =200 \\
\Rightarrow x & =200-112 \\
\Rightarrow x & =88 \mathrm{~g}
\end{aligned}
$$

Mass of Carbon dioxide $=88 \mathrm{~g}$.

[^0]5. 0.24 g sample of compound of oxygen and boron was found by analysis to contain 0.144 g of oxygen and 0.096 g of boron. Calculate the percentage of composition of the components by weight.
A. Mass of compound $=0.24 \mathrm{~g}$
\[

$$
\begin{aligned}
\text { Mass of oxygen } & =0.144 \mathrm{~g} \\
\text { Mass of Boron } & =0.096 \mathrm{~g}
\end{aligned}
$$
\]

Weight percentage of oxygen in compound

$$
\begin{aligned}
& =\frac{\text { mass of oxygen }}{\text { mass of compound }} \times 100 \\
& =\frac{0.144}{0.24} \times 100=\frac{12}{20} \times 100=12 \times 5=60 \%
\end{aligned}
$$

Weight percentage of boron in compound

$$
\begin{aligned}
& =\frac{\text { mass of boron }}{\text { mass of compound }} \times 100 \\
& =\frac{0.096}{0.24} \times 100=\frac{8}{20} \times 100=8 \times 5=40 \%
\end{aligned}
$$

6. In a class, a teacher asked to write the molecular formula of oxygen Shamita wrote the formula as O_{2} and Priyanka as O. which one is correct? State the reason.?
A. ' O ' is the symbol of oxygen atom.
' O_{2} ' is the formula of oxygen molecule.
So the answer given by Shamitha is correct.
7. Imagine what would happen if we do not have standard symbols for elements?
A. If we do not have standard symbols for elements, it is very difficult to remember all the names in different languages. Developments and research works on elements would have stopped at earlier stages due to confusion.
8. Mohith said " H_{2} differs from $\mathbf{2 H}$ ". Justify.
A. Yes. Mohith is correct.
H_{2} differs from 2 H .
H_{2} represents one hydrogen molecule. 2 H represents two hydrogen atoms.
9. Lakshmi gives a statement "CO and Co both represents element". Is it correct? State reason.
A. No. Lakshmi's statement is wrong.
(i) CO is the formula of Carbon monoxide molecule. It is a compound.
(ii) Co is the symbol of Cobalt atom. It is an element.
10. The formula of water molecule is $\mathrm{H}_{2} \mathrm{O}$. What information you get from this formula.
A. $\mathrm{H}_{2} \mathrm{O}$ is the formula of Water. It tell us
(i) one molecule of water
(ii) It is the oxide of Hydrogen
(iii) It consists of three atoms
(iv) Its molecular weight $=(2 \times 1+1 \times 16)=18 u$
11. How would you write 2 molecules of oxygen and 5 molecules of Nitrogen.
A. O_{2} represents Oxygen molecule.

2 Oxygen molecules are denoted by $\mathrm{2O}_{2}$
N_{2} represents Nitrogen molecule.
5 Nitrogen molecules are denoted by $5 \mathrm{~N}_{2}$
12. The formula of a metal oxide is MO.

Then write the formula of its chloride.
A. Formula of given metallic oxide is MO. It means the valence of 'Metal' and 'Oxygen' are equal.

The valency of Oxygen =2
The valency of Metal (M) =2
The valency of Chlorine $=1$ According to Criss-cross method:

The formula of Metallic chloride of the metal given is MCl_{2}.
13. Formula of calcium hydroxide is $\mathrm{Ca}(\mathrm{OH})_{2}$ and zinc phosphate is $\mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2}$. Then write the formula to Calcium phosphate.
A. Formula of calcium hydroxide $=\mathrm{Ca}(\mathrm{OH})_{2}$

So the valency of $\mathrm{Ca}=2$
Formula of Zinc phosphate $=\mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
So the valency of $\left(\mathrm{PO}_{4}\right)=3$
According to Criss-cross method:

The formula of Calcium Phosphate is

$\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \cdot$| NAGA MURTHY- 9441786635 |
| :--- |
| Contact at : nagamurthysir@ gmail.com |
| Visit at : ignitephysics.weebly.com |

14. Find out the chemical names and formulae for the following common household substances.
(a) common salt
(b) baking soda
(d) vinegar
A. (c) washing soda

Common Name	Chemical Name	Formula
Common salt	Sodium chloride	NaCl
Baking soda	Sodium bi carbonate	NaHCO_{3}
Washing soda	Sodium carbonate	$\mathrm{Na}_{2} \mathrm{CO}_{3}$
Vinegar	Acetic acid	$\mathrm{CH}_{3} \mathrm{COOH}$

15. Calculate the mass of the following.
a) 0.5 mole of N_{2} gas.
b) 0.5 mole of \mathbf{N} atoms.
c) 3.011×10^{23} number of N atoms.
d) 6.022×10^{23} number of N_{2} molecules.
A. (a) atomic mass of Nitrogen $=14 \mathrm{u}$

Molar mass of Nitrogen $\left(\mathrm{N}_{2}\right)=28 \mathrm{~g}$
Mass of 1 mole of N_{2} gas $=28 \mathrm{~g}$
Mass of 0.5 mole of N_{2} gas $=0.5 \times 28$

$$
=14 \mathrm{~g}
$$

(b) atomic mass of Nitrogen $=14 \mathrm{u}$

Mass of 1 mole of N atoms $=14 \mathrm{~g}$
Mass of 0.5 mole of N atoms $=0.5 \times 14$

$$
=7 \mathrm{~g} .
$$

(c) atomic mass of Nitrogen $=14 \mathrm{u}$

Mass of 1 mole of N atoms $=14 \mathrm{~g}$ Mass of 6.022×10^{23} number of N atoms $=14 \mathrm{~g}$.
Mass of 3.011×10^{23} number of N atoms

$$
=\frac{3.011 \times 10^{23}}{6.022 \times 10^{23}} \times 14=\frac{1}{2} \times 14=7 \mathrm{~g}
$$

(d) atomic mass of Nitrogen $=14 \mathrm{u}$

Molar Mass of N_{2} molecule $=28 \mathrm{~g}$
Mass of 6.022×10^{23} number of N_{2} molecules $\mathrm{N}_{2}=28 \mathrm{~g}$.
16. Calculate the number of particles in each of the following
a) 46 g of Na
b) 8 g of O_{2}
c) 0.1 mole of hydrogen
A. (a) atomic mass of $\mathrm{Na}=23 \mathrm{u}$

Molar mass of sodium (Na) $=23 \mathrm{~g}$
Number of particles in 23 g of Na

$$
=6.022 \times 10^{23}
$$

Number of particles in 46 g of Na

$$
\begin{aligned}
& =\frac{46}{23} \times 6.022 \times 10^{23} \\
& =2 \times 6.022 \times 10^{23} \\
& =12.046 \times 10^{23}
\end{aligned}
$$

(b) atomic mass of " O " = 16 u

Molar mass of oxygen $\left(\mathrm{O}_{2}\right)=32 \mathrm{~g}$
Number of particles in 32 g of O_{2}

$$
=6.022 \times 10^{23}
$$

Number of particles in 8 g of O_{2}

$$
\begin{aligned}
& =\frac{8}{32} \times 6.022 \times 10^{23} \\
& =\frac{1}{4} \times 6.022 \times 10^{23} \\
& =1.5055 \times 10^{23}
\end{aligned}
$$

(c) atomic mass of " H " $=1 \mathrm{u}$

Molar mass of hydrogen $\left(\mathrm{H}_{2}\right)=1 \mathrm{~g}$
Number of particles in 1 mole of H_{2}

$$
=6.022 \times 10^{23}
$$

Number of particles in 0.1 mole of H_{2}

$$
=0.6022 \times 10^{23}
$$

17. Convert into mole.
a) 12 g of O_{2} gas
b) $\mathbf{2 0 g}$ of water.
c) 22 g of carbon dioxide.
A. (a) Molar mass of oxygen $\left(\mathrm{O}_{2}\right)=32 \mathrm{~g}$

32 g of O_{2} consists of 1 mole.
12 g of O_{2} consists of $\frac{12}{32} \times 1=0.375$ moles
(b) Water molecule formula is $\mathrm{H}_{2} \mathrm{O}$

Molar mass of water $=(2 \times 1+1 \times 16)$

$$
\begin{aligned}
& =2+16 \\
& =18 \mathrm{~g}
\end{aligned}
$$

18 g of water consists of 1 mole.
20 g of O_{2} consists of $\frac{20}{18} \times 1=1.11$ moles
(c) Carbon dioxide formula is CO_{2}

Molar mass of $\mathrm{CO}_{2}=(1 \times 12+2 \times 16)$

$$
\begin{aligned}
& =12+32 \\
& =44 \mathrm{~g}
\end{aligned}
$$

44 g of CO_{2} consists of 1 mole.
22 g of CO_{2} consists of $\frac{22}{44} \times 1=0.5$ moles
18. Write the valencies of Fe in FeCl_{2} and FeCl_{3}.
A. According to Criss-cross method the valencies arranged as subscripts in the formula.
(i) In FeCl_{2} the valency of chlorine is 1.

So the valency of Fe' is 2.
(Because there are 2 chlorine atoms)
(ii) $\operatorname{In~} \mathrm{FeCl}_{3}$ the valency of chlorine is 1.

So the valency of Fe' is 3 .
(Because there are 3 chlorine atoms)

[^1]19. Calculate the molar mass of Sulphuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ and glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$.
A. Atom atomic mass

H	1
S	32
O	16
C	12

(i) Molar mass of Sulphuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$

$$
\begin{aligned}
& =2 \times 1+1 \times 32+4 \times 16 \\
& =2+32+64 \\
& =98 \mathrm{~g}
\end{aligned}
$$

(ii) Molar mass of Glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$

$$
\begin{aligned}
& =6 \times 12+12 \times 1+6 \times 16 \\
& =72+12+96 \\
& =180 \mathrm{~g}
\end{aligned}
$$

20. Which has more number of atoms 100 g of sodium or 100 g of iron? Justify your answer.
(atomic mass of sodium $=23 u$
atomic mass of iron $=56 \mathrm{u}$)
A. (a) atomic mass of $\mathrm{Na}=23 \mathrm{u}$

The number of atoms in 23 g of sodium

$$
=6.022 \times 10^{23}
$$

The number of atoms in 100 g of sodium

$$
\begin{aligned}
& =\frac{100}{23} \times 6.022 \times 10^{23} \\
& =4.35 \times 6.022 \times 10^{23}
\end{aligned}
$$

(b) atomic mass of $\mathrm{Fe}=56 \mathrm{u}$

The number of atoms in 56 g of Iron

$$
=6.022 \times 10^{23}
$$

The number of atoms in 100 g of Iron

$$
\begin{aligned}
& =\frac{100}{56} \times 6.022 \times 10^{23} \\
& =1.79 \times 6.022 \times 10^{23}
\end{aligned}
$$

100 g of sodium contains more atoms than 100 g of Iron.
21. Complete the following table.

Anions	Chloride	Hydroxide	Nitrate	Sulphate	Carbonate	Phosphate
Cations ∇						
Sodium	NaCl	NaOH	NaNO	$\mathrm{Na}_{2} \mathrm{NO}_{4}$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	$\mathrm{Na}_{3} \mathrm{PO}_{4}$
Magnesium	MgCl_{2}	$\mathrm{Mg}(\mathrm{OH})_{2}$	$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$	MgSO_{4}	MgCO_{3}	$\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
Calcium	CaCl_{2}	$\mathrm{Ca}(\mathrm{OH})_{2}$	$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	CaSO_{4}	CaCO_{3}	$\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
Aluminium	AlCl_{3}	$\mathrm{Al}(\mathrm{OH})_{3}$	$\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$	$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	$\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}$	AlPO_{4}
Ammonium	$\mathrm{NH}_{4} \mathrm{Cl}$	$\mathrm{NH} \mathrm{NH}_{4} \mathrm{OH}$	$\mathrm{NH}_{4} \mathrm{NO}_{3}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$	$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$

22. Fill the following table.

SI No	Name	Symbol / Formula	Atomic mass Molar mass	Number of particles Present in molar mass
1	Atomic oxygen	O	16 g	6.022×10^{23} atoms of oxygen
2	Molecular oxygen	O_{2}	32 g	6.022×10^{23} molecules of oxygen
3	Sodium	Na	23 g	6.022×10^{23} atoms of sodium
4	Sodium ion	Na^{+}	23 g	6.022×10^{23} ions of sodium
5	Sodium chloride	NaCl	38.5 g	6.022×10^{23} molecules of NaCl
6	Water	$\mathrm{H}_{2} \mathrm{O}$	18 g	6.022×10^{23} molecules of water

[^0]: NAGA MURTHY- 9441786635 Contact at: nagamurthysir@gmail.com Visit at: ignitephysics.weebly.com

[^1]: NAGA MURTHY-9441786635 Contact at: nagamurthysir@gmail.com Visit at: ignitephysics.weebly.com

