05. ATOMS AND MOLECULES Questions and Answers

- 1. Draw the diagram to show the experimental setup for the law of conservation of mass.
- Α.

2. Explain the process and precautions in verifying law of conservation of mass.

A. Experiment:

- Aim: To verify the law of conservation of mass.
- Material required: Lead nitrate, potassium iodide, distilled water, conical flask, spring balance, test tube, stand, rubber cork, thread etc.

Procedure

- 1. Prepare a solution by dissolving approximately 2 grams of lead nitrate in 100 ml of distilled water.
- 2. Prepare another solution by dissolving approximately 2 gm of Potassium iodide in 100 ml water.
- 3. Take 100ml solution of lead nitrate in 250ml conical flask.
- 4. Also take 4ml solution of potassium iodide in test tube.
- 5. Hang the test tube in the flask carefully, without mixing the solutions. Put a cork on the flask.
- 6. Weigh the flask with its contents Carefully.
- 7. Now tilt and swirl the flask, so that the two solutions mix.
- 8. Weigh the flask again by the same Balance.
- 9. Record your observations:

Weight of flask and contents before

mixing =

Weight of flask and contents after mixing = We observed that a chemical reaction took place and the mass remained same before and after chemical reaction. Therefore, mass was neither created nor destroyed in the chemical reaction. Hence The law of conservation of mass is verified.

- 15.9g. of copper sulphate and 10.6g of sodium carbonate react together to give 14.2g of sodium sulphate and 12.3g of copper carbonate. Which law of chemical combination is obeyed? How?
- A. Mass of Copper sulphate = 15.9 g Mass of Sodium Carbonate = 10.6 g Total mass of reactants = 26.5 g
- Mass of Sodium sulphate = 14.2 g
 - Mass of Calcium carbonate = 12.3 g Total mass of products = 26.5 g
 - The total mass of reactants is equal to the total mass of products.

The law of conservation of mass is obeyed in this reaction.

- Carbon dioxide is added to 112g of calcium oxide. The product formed is 200g of calcium carbonate. Calculate the mass carbon dioxide used. Which law of chemical combination will govern your answer.
- A. CaO + CO₂ → CaCO₃ Mass of Calcium oxide = 112 g Mass of Carbon dioxide = 'x' g
 Mass of Calcium carbonate = 200 g
 According to law of conservation of mass, The total mass of reactants is equal to the total mass of products.

+
$$112 = 200$$

 $\Rightarrow x = 200 - 112$

Mass of Carbon dioxide = 88 g.

Х

NAGA MURTHY- 9441786635 Contact at : <u>nagamurthysir@gmail.com</u> Visit at : ignitephysics.weebly.com

- 5. 0.24g sample of compound of oxygen and boron was found by analysis to contain 0.144g of oxygen and 0.096g of boron. Calculate the percentage of composition of the components by weight.
- A. Mass of compound = 0.24 g Mass of oxygen = 0.144 g Mass of Boron = 0.096 g

Weight percentage of oxygen in compound

$$= \frac{mass of oxygen}{mass of compound} \times 100$$
$$= \frac{0.144}{0.24} \times 100 = \frac{12}{20} \times 100 = 12 \times 5 = 60\%$$
Weight percentage of boron in compound

$$= \frac{mass of boron}{mass of compound} \times 100$$

= $\frac{0.096}{0.24} \times 100 = \frac{8}{20} \times 100 = 8 \times 5 = 40\%$

- 6. In a class, a teacher asked to write the molecular formula of oxygen Shamita wrote the formula as O₂ and Priyanka as O. which one is correct? State the reason.?
- A. 'O' is the symbol of oxygen atom.
 'O₂' is the formula of oxygen molecule.
 So the answer given by Shamitha is correct.
- 7. Imagine what would happen if we do not have standard symbols for elements?
- A. If we do not have standard symbols for elements, it is very difficult to remember all the names in different languages. Developments and research works on elements would have stopped at earlier stages due to confusion.
- 8. Mohith said "H₂ differs from 2H". Justify.
- A. Yes. Mohith is correct.
 H₂ differs from 2H.
 H₂ represents one hydrogen molecule.
 2H represents two hydrogen atoms.
- 9. Lakshmi gives a statement "CO and Co both represents element". Is it correct? State reason.
- A. No. Lakshmi's statement is wrong.(i) CO is the formula of Carbon monoxide molecule. It is a compound.

- (ii) Co is the symbol of Cobalt atom. It is an element.
- 10. The formula of water molecule is H_2O . What information you get from this formula.
- A. H_2O is the formula of Water. It tell us
 - (i) one molecule of water
 - (ii) It is the oxide of Hydrogen
 - (iii) It consists of three atoms
 - (iv) Its molecular weight=(2x1+1x16) =18u
- 11. How would you write 2 molecules of oxygen and 5 molecules of Nitrogen.
- A. O₂ represents Oxygen molecule.
 2 Oxygen molecules are denoted by 2O₂
 N₂ represents Nitrogen molecule.
- 5 Nitrogen molecules are denoted by 5N₂12. The formula of a metal oxide is MO. Then write the formula of its chloride.
- A. Formula of given metallic oxide is MO.
 It means the valence of 'Metal' and 'Oxygen' are equal.

The valency of Oxygen = 2

- The valency of Metal (M) = 2
- The valency of Chlorine = 1 According to Criss-cross method:
 - M^2 Cl^1 Cl_2

The formula of Metallic chloride of the metal given is MCl₂.

- Formula of calcium hydroxide is Ca (OH)₂ and zinc phosphate is Zn₃(PO₄)₂. Then write the formula to Calcium phosphate.
- **A.** Formula of calcium hydroxide = $Ca(OH)_2$ So the valency of Ca = 2
 - Formula of Zinc phosphate = $Zn_3(PO_4)_2$ So the valency of (PO₄) = 3
 - According to Criss-cross method:

$$\begin{array}{c} Ca^2 \\ Ca_3 \end{array} \xrightarrow{(PO_4)^3} \\ (PO_4)_2 \end{array}$$

Contact at : nagamurthysir@gmail.com

Visit at : ignitephysics.weebly.com

NAGA MURTHY- 9441786635

The formula of Calcium Phosphate is

Ca₃(PO₄)₂.

14. Find out the chemical names and			(b) atomic mass of 'O" = 16 u				
formulae fo	or the following co	ommon	Molar mass of oxygen $(O_2) = 32$ g				
household	substances.		Number of particles in 32 g of Ω_2				
(a) common salt (b) baking soda				$= 6.022 \times 10^{23}$			
A. (c) wash	ing soda (d) vine	gar	Numb	er of particles in 8 g of O_2			
Common Name	Chemical Name	Formula		$=\frac{8}{3} \times 6.022 \times 10^{23}$			
Common salt	Sodium chloride	NaCl	- ₃₂ × 0.022×10				
Baking soda	Sodium bi carbonate	NaHCO ₃	$=\frac{1}{4} \times 6.022 \times 10^{23}$				
Washing soda	Sodium carbonate	Na ₂ CO ₃	$= 1.5055 \times 10^{23}$				
Vinegar	Acetic acid	CH ₃ COOH	(c) atomic mass of 'H" = 1 u				
15. Calculate t	he mass of the fol	lowing.	Molar mass of hydrogen $(H_2) = 1$ g				
a) 0.5 mole of N₂ gas.			Number of particles in 1 mole of H_2				
b) 0.5 mole	of N atoms.			$= 6.022 \times 10^{23}$			
c) 3.011 X 1	0 ²³ number of N a	toms.	Numb	$= 0.022 \times 10^{-1}$			
d) 6.022 X 1	0^{23} number of N ₂ n	nolecules.	- Turno	$= 0.6022 \times 10^{23}$			
A. (a) atomic m	ass of Nitrogen = 1	4 u	17. Conver	t into mole.			
Molar ma	ss of Nitrogen (N ₂)	= 28 g	a) 12	α of Ω_2 gas b) 20g of water.			
Mass of 1	mole of N_2 gas = 2	.8 g	c) 22	g of carbon dioxide.			
Mass of C	$0.5 \text{ mole of } N_2 \text{ gas} =$	0.5 x 28	A. (a) Molai	mass of oxygen $(O_2) = 32 \text{ g}$			
	=	= 14 g.	32 g c	of O_2 consists of 1 mole.			
(b) atomic m	ass of Nitrogen = 1	4 U	12 g c	of O ₂ consists of $\frac{12}{32}$ x1= 0.375 moles			
Mass of 1	mole of N atoms =	14 g	(b) Water molecule formula is H_2O				
Mass of C	0.5 mole of N atoms	= 0.5 x 14	Molar mass of water = $(2x1+1x16)$				
	=	= 7 g.	And Inc.	-2 + 16			
(c) atomic m	ass of Nitrogen = 1	4 u		- 18 g			
Mass of 1	mole of N atoms =	14 g	= 10 g				
Mass of 6.022x10 ²³ number of N atoms			physics.net To g of water consists of T mole.				
		= 14 g.	20 g c	of O_2 consists of $\frac{1}{18}$ x1= 1.11 moles			
Mass of 3	3.011x10 ²³ number (of N atoms	(c) Carbon dioxide formula is CO ₂				
=	$\frac{3.011 \times 10^{23}}{6.022 \times 10^{23}} \times 14 = \frac{1}{2} \times 10^{23}$	14 = 7 g	Molar mass of $CO_2 = (1x12+2x16)$				
(d) atomic mass of Nitrogen = 14 µ			= 12 + 32				
Molar Ma	ss of N ₂ molecule =	28 g	= 44 g				
Mass of 6	6.022x10 ²³ number (of N ₂	44 g of CO ₂ consists of 1 mole.				
molecules $N_2 = 28$ g.		22 g of CO ₂ consists of $\frac{1}{44}$ x1= 0.5 moles					
16. Calculate the number of particles in			18. Write the valencies of Fe in FeCl ₂				
each of the	e following		and Fe				
a) 46g o	fNa b)8go	f O ₂	A. Accordin	g to Criss-cross method the			
c) 0.1 mole of hydrogen			valencies arranged as subscripts in the				
A. (a) atomic mass of Na = 23 u		formula.					
Molar ma	ss of sodium (Na) =	: 23 g	(i) In FeCl ₂ the valency of chlorine is 1.				
Number of particles in 23 g of Na			So the valency of Fe' is 2.				
$= 6.022 \times 10^{23}$			(Because there are 2 chlorine atoms)				
Number of particles in 46 g of Na			(ii) In FeCl ₃ the valency of chlorine is 1.				
$=\frac{46}{2} \times 6.022 \times 10^{23}$		So the valency of Fe' is 3.					
$-\frac{23}{23} \times 0.022 \times 10^{23}$		(Because there are 3 chlorine atoms)					
$= 2 \times 6.022 \times 10^{23}$			NAGA MURTHY- 9441786635				
	= 12.04	+0 X 10		Contact at : <u>nagamurthysir@gmail.com</u> Visit at : ignitephysics.weebly.com			

21.	. Complete the	e ionowing t	able. 🚽				
	Anions►	Chloride	Hydroxide	Nitrate	Sulphate	Carbonate	Phosphate
	Cations ▼		R		8-/		
	Sodium	NaCl	NaOH	NaNO ₃	Na ₂ SO ₄	Na ₂ CO ₃	Na ₃ PO ₄
	Magnesium	MgCl ₂	Mg(OH) ₂ w	Mg(NO ₃) ₂	ºMgSO₄	MgCO₃	$Mg_3(PO_4)_2$
	Calcium	CaCl ₂	Ca(OH) ₂	Ca(NO ₃) ₂	CaSO ₄	CaCO₃	$Ca_3(PO_4)_2$
	Aluminium	AICI ₃	AI(OH) ₃	AI(NO ₃) ₃	$AI_2(SO_4)_3$	$AI_2(CO_3)_3$	AIPO ₄
	Ammonium	NH₄CI	NH₄OH	NH_4NO_3	$(NH_4)_2SO_4$	$(NH_4)_2CO_3$	$(NH_4)_3PO_4$

22. Fill the following table.

SI No	Name	Symbol / Formula	Atomic mass / Molar mass	Number of particles Present in molar mass	
1	Atomic oxygen	0	16 g	6.022 x 10 ²³ atoms of oxygen	
2	Molecular oxygen O ₂		32 g	6.022 x 10 ²³ molecules of oxygen	
3	Sodium	Na	23 g	6.022 x 10 ²³ atoms of sodium	
4	Sodium ion	Na⁺	23 g	6.022 x 10 ²³ ions of sodium	
5	Sodium chloride	NaCl	38.5 g	6.022 x 10 ²³ molecules of NaCl	
6	Water	H ₂ O	18 g	6.022 x 10 ²³ molecules of water	

NAGA MURTHY- 9441786635 Contact at : <u>nagamurthysir@gmail.com</u> Visit at : ignitephysics.weebly.com